STEREO Flight Software Status

Feb. 4, 1999

Ben Ballard

443-778-6980

 $ben_ballard@jhuapl.edu$

Baseline Deliverables

- Flight products
 - C&DH software
 - G&C flight computer software
 - AIE software
- GSE products
 - C&DH testbed software
 - G&C testbed software
 - Spacecraft emulator software (for instrument support)
 - Hardware diagnostic software

Software Development Planning

- Co-locate developers with hardware system implementers
- Establish central repository for software documentation and code
- Use tools to integrate requirements, architecture, design, implementation, R/QA, test, and documentation
 - control requirements
 - keep documents up-to-date with "as-built" software
 - help collect software R/QA information automatically
 - identify impacts of proposed requirements changes
- Provide standard utility functions for data storage and communications on all flight processors

Trade Studies

- Variable length packets
 - John Hayes is writing software to benchmark on the Mongoose
 - Impact on TIMED mission ops software reuse needs to be evaluated
- G&C computer make / buy
 - Dan Rodriguez is coordinating
 - If "buy", we will study operating system / development tool options
- SSR management automation discussion follows

SSR Management

- TIMED baseline: very manual
 - Each SSR block holds 242 bytes of user data
 - Each SSR cluster holds 512 blocks, and is marked "good" or "bad"
 - Each SSR contains 2501 clusters
 - Each SSR is divided into 2 segments with programmable sizes
 - Each SSR segment has a write pointer and a read pointer
 - write pointer is number of block to be written next
 - read pointer is number of block to be read next
 - SSR operations are controlled by low level commands
 - set map of good and bad clusters
 - set read / write pointers
 - start / stop read / write operations

TIMED SSR Operations

- SSR operations are "tape-like"
 - read, write pointers are like tape positions
 - operations are sequential
 - blocks are like fixed-length tape records
- Mission operations has to manage cluster maps, segments, pointers, etc.
- Record / playback / replay scheduling requires continuing manual effort
- Non-intuitive user interface requires significant training for new operators

Proposed SSR Management

Goal: minimize manual MOPS management of SSR

- MOPS operator functions
 - set priorities of multiple playback data sets
 - start / stop data passes
 - monitor data playback; debug problems
- C&DH / MOPS software functions
 - monitor availability of downlink
 - when link is available, dump SSR using priorities set by MOPS
 - · retransmit data as necessary to complete dataset on ground
 - delete data from SSR when received successfully on ground

Nominal Data Pass Operations

- Establish contact
- Initiate command load uplink
- Downlink starts automatically according to pre-programmed priorities, for example:
 - G&C anomaly data
 - Engineering anomaly data
 - Instrument data
 - Nominal engineering data
- Operators can override downlink priorities in real time

Downlink Display Mock-up

SSR Management Concept

C&DH software

Transmits frames as indicated by priority Keeps frames until commanded to delete them Retransmits or deletes frames as commanded

MOPS software

Bookkeeps frames received or missed Sends delete commands for frames received Sends retransmit commands for frames missed

SSR Management Issues

- Delete / retransmit protocol details
 - minimize uplink messages due to constrained bandwidth
 - add query commands to determine SSR statistics
- Could we use protocols already developed?
 - GSFC is demonstrating a low level protocol to do file transfers
 - JPL is implementing Internet protocols optimized for space
- Is a protocol like this safe and effective for Stereo?
 - Assess whether they meet Stereo's requirements
 - assess impact on C&DH loading and bandwidth overhead
 - assess impact on C&DH and MOPS software reusability
 - estimate savings in Mission Operations costs